Broadstone Hall Primary School Calculation Policy

This policy has been developed to show progression in addition/subtraction/multiplication/division in line with a Mastery approach for teaching mathematics, and is based on key models and images from the White Rose Calculation Policy.

Addition

Objectives
- Knows that a group of things change in quantity when something is added. - Find the total number of items in two groups by counting all of them.
- Says the number that is one more than a given number. - Finds one more from a group of up to five objects, then ten objects.
In practical activities and discussion, beginning to use the vocabulary involved in adding.
- Using quantities and objects, they add two single digit numbers and count on to find the answer. - Solve problems including doubling.

Objective		Concrete	Pictorial	Abstra	
		Use counters (or other objects) to add two numbers together in a group or a bar.	Use pictures and part whole/bar models to add together two numbers as a group or in a bar.	Use part numbers abstract.	models and ve towards the 2 3 $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$
		Start with the larger number and then count on 1 by 1 . Number lines can be modelled using cubes, counters or numicon.	Use a number line to count in ones	$5+3=8$	

Objective		Concrete	Pictorial	Abstract
		Manipulaties which highlight number bonds to 10 are effective for this objective. E.g. $4+7+6=17$ Add together the 4 and 6 to make 10 . Add on 7. $7+6+3=16$	Draw pictures to recombine the objects into a group which makes ten.	Combine the two numbers which make ten and then add the remainder. $\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$
		Children should be encouraged to count on from the larger number. They should also be encouraged to develop their knowledge of number bonds to develop efficiency.	 ? 38	$38+5=43$

Obj		Concrete	Pictorial	Abstract
		Make both numbers on a place value grid. Add together the ones first, then the tens. Use Base ten blocks before moving on to counters. $24+15=$	After physically moving base 10 blocks and counters, children can move on to drawing the counters.	$\begin{aligned} & 24+15=39 \\ & 24 \\ & \frac{24}{39} \end{aligned}$
	\qquad	Make both numbers on a place value grid. Add up the ones and exchange 10 ones for 1 ten.	After physically moving counters, children draw the counters to help carry out the addition calculation.	$38+23=61$ $\begin{aligned} & 40+9 \\ & \underline{20+3} \\ & 60+12=72 \end{aligned} \quad \begin{array}{r} 38 \\ +23 \\ \hline 61 \end{array}$

Subtraction

Obj		Concrete	Pictorial	Abstract
		Use physical objects, counters, cubes etc. to show how objects can be taken away	Cross out drawn objects to show what has been taken away. 4-2 = 2	$4-2=2$
		Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$ $13-4=9$	Count back on a number line or number track Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Obj		Concrete	Pictorial	Abstract
Subtraction: Year 1		Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Uso is 13 yeors oid. Her shfer is 22 yeors old. find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.
	$\begin{aligned} & \frac{\pi}{0} \\ & \frac{0}{3} \\ & \frac{0}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$	Link to addition. Use the PWM to model the inverse. If 10 is the whole and 6 is one of the parts, what Is the other part.	$\begin{aligned} & 7-3=4 \\ & 7-4=3 \end{aligned}$	Move to using numbers within the part whole model.

Objective		Concrete	Pictorial	Abstract
		$14-9=$ Make the 14 on the ten frame. Take away the 4 first to make 10 and then take away 1 more so you have taken away 5 . You are left with 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Objective		Concrete Use the base 10 to make the bigger number, then take the smaller number away.	Pictorial	Abstract
		Use the base 10 to make the bigger number, then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first	Draw the dase ıu ui piace value cuuniters alongside the written calculation to help to show working.	Expanded written method can help bridge to the formal written method. $\begin{gathered} 47-24=23 \\ -\frac{40+7}{-20+4} \\ \hline 20+3 \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -12 \\ \hline 20 \\ \hline \end{array}$
		Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.	Children could draw counters to show exchnge in the same way. $72-35=37$	$65-28=37$

Obj		Concrete	Pictorial	Abstract
		Use base 10 or numicom to modell The calculation should be shown alongside the concrete resource.	Children are to be secure with use of PV counters before moving onto abstract.	It maybe useful to begin with the expanded form. Moving onto a more formal way as below. $\begin{array}{cc} 47-24=23 & 728-582=146 \\ 40+7 & " 7 \\ \hline 20+4 \\ -20+3 & 5 \\ \hline \end{array}$
		Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.	When confident, children can find their own way to the exchange/ regrouping.	It may be useful to begin with the expanded form. Moving onto a more formal way as below (bottom picture)

Objective		Concrete			Pictorial	Abstract
		Hundreds 	Tens	$\frac{\text { Ones }}{00 \varnothing \varnothing}$		

Obje		Concrete	Pictorial	Abstract
		Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting numbers with more than 4 digits	294,382 182,501 ?	At this stage children should be encouraged to work in the abstract, using the column method. $\begin{array}{r} \not x^{\prime \prime} 8 \not 0,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 100 \cdot 31419 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$
		Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting decimals with 1, 2 and then 3 decimal places		Ensure children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures. $\begin{array}{r} x " 806,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \begin{array}{r} 185 \cdot 3149 \mathrm{~kg} \\ -\quad 36 \cdot 080 \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array} \\ \hline \end{array}$

Multiplication

Multiplication-EYFS			
Objectives	Concrete	Pictorial	Abstract
- Solve problems including doubling	Counting and other maths resources for children to make 2 equal groups. Physical and real life examples that encourage children to see concept of doubling as adding two equal groups.	Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

Objective		Concrete	Pictorial	Abstract
		Count the groups as children are skip counting. Children may use their fingers to skip count. Use bar models. Also use objects in groups. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
		This should be taught alongside division, so the children understand how they work alongside each other.	/4 $\square \times \square=\square$ $\square \times \square=\square$ $\square \div \square=\square$ $\square \div \square=\square$	$2 \times 4=8$ $4 \times 2=8$ $8+2=4$ $8+4=2$ $8=2 \times 4$ $8=4 \times 2$ $2=8+4$ $4=8+2$ Show all 8 related fact family sentences.

Objective		Concrete	Pictorial	Abstract			
		See Previous section (2-digit by 1-digit) When moving to 3-digit by 1-digit multiplication encourage the children to move towards the short,formal written method. Concrete manipulatives may still be used for support where needed	See Previous section (2-digit by 1-digit When moving to 3-digit by 1-digit multiplication, encourage the children to morshort, formal written method\qquad be used to support understanding of the writen encourage children to move away from theresources when multiplying bigger numbers.	When moving to 3-digit by 1-digit towards the short, formal written method.			
					H	T	o
					2	4	5
				\times			4
		ㄹ			9	8	0
					1	2	

Division

Division- EYFS			
Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half. Counting and other maths resources for children to share into two equal groups. Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated. Counting and other maths resources for children to explore sharing between 3 or more.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	

Objective		Concrete	Pictorial	Abstract
		Use cubes, counters or place value counters to aid understanding. Link to multiplication by making arrays	Draw arrays and use lines to split the array into groups to make multiplication and division sentences. Continue to use bar modelling as an aid to solving division problems. Split into the number of groups you are dividing by and work out how many would be within each group.	How many groups of 6 in 24 ? $24 \div 6=4$ Show that division is the inverse of multiplication by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$
		Use Place value counters to divide by sharing. Children should write the short division method next to the concrete representation to see the link.	Children can draw counters to show their division method. Part Whole model can be used to show how the numbers are partitioned.	$66 \div 3=22$ The children may start to use the short division method alongside the concrete representation. $3 \sqrt{21}$

